CYBORG ARM

DESIGN REVIEW 1

FORCE MULTIPLIER

Example of assistive force multiplier http://www.cornellcollege.edu/physics/files/mark-novak.pdf

GOALS

SENSITIVE

- Accurately measures muscle activity
- Negligible delay between signal and output

COMFORTABLE/SAFE

- Does not inhibit movement
- Minimal weight burden
- Layer of protective/ comfortable material between user and arm.

SYSTEM:

System Sketches

Rough Design Idea 1:

Rough Design Idea 2:

DESIGN DECISIONS:

Mechanical:

Gear vs. Series Elastic Actuator (SEA)

Sensors:

EMG vs. Pressure Plates

SENSOR: PRESSURE SENSOR

PROS:

- Easiest to program
- Simplicity
- More reliable as a sensor

CONS:

- Harder to incorporate all uses of arm
- More difficult for the user to control

SENSOR:

ELECTROMYOGRAPHY

PROS:

Cons:

- -Natural. It should behave exactly how it should
- -has proof of concept done before
- -Can be very finicky. May result in spending more time getting EMG to work than design
- Will require both bicep and triceps for accurate readings of movement

GEARS

PROS:

 Capable of greater force in a shorter amount of time

 Faster implementation

Cons:

 Feels like the cyborg arm is moving rather than user's own arm

 limited range of motion/ little lee-way for the user

SERIES ELASTIC ACTUATORS

PROS

- Allows user more leeway and freedom.
- More supportive and less forcing
- Assistive rather than controlling

Cons

- harder to calibrate
- more complicated
- may be more expensive
- involves a lot of research
- Not obvious instant response

SIGNAL PROCESSING

- Low pass filter
 - remove DC bias from the computer
- Band-stop filter- 61-69 Hz
 - to remove noise
 - Calibrated to lose minimal signal information
- Convert AC signal to DC via Root mean square
 - DC Motor requires DC signal